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Validity of the BCS model Hamiltonian in the limit of small sizes
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Finite-size effects when the electronic level spacings become comparable to the bulk superconducting gap
can suppress pairing correlations in small metallic particles. We examine an alternative mechanism for finite-
size suppression of superconductivity: the role of the nonpair portion of the interaction, which could become
important in small systems. We show that the crossover size at which the nonpair contribution becomes
significant is typically already within the regime wherein finite level spacing suppresses the pairing correla-
tions; however, the nonpair terms could become relevant in certain weak-coupled superconductors.

In sufficiently large systems at low temperatures energetiononpair matrix elements comprise the vast majority of the
arguments will often favor simple correlations: the less re-Hamiltonian matrix. For sufficiently small systems the low-
strictive the correlation, the greater the scope to superposeest eigenvalue of the random portion of the interaction ma-
large number of correlated states into an energetically favortrix might be lower in energy than the BCS state, raising the
able ground state. Examples can be found in both classicajuestion of when this crossover occurs. In a bulk system the
and quantum systems, e.g., the existence of crystalline peBCS ground state is lower in energy than the normal state by
odicity in sufficiently large clusters and the irrelevance ofroughly N(0)A2~N(A/Eg)A (N being the total number of
fourfold and higher correlations in bulk BCS paired electron$, a constant energetic lowering per electt8he
superconductors.However, in sufficiently small systems, nonpair-correlated part of the Hamiltonian matrix contains a
the phase space avallr?lble' for explomng a simple ene_rget%—Otal number of relevant basis stateﬁlNI, where N
cally favorable correlation is more restricted and the situa- /2

tion can change qualitatively. A classical example here=2N(0)%@phonon gives the number of states which are ac-

would be the nontetrahedral structures of small silicontive in superconductivityandN(0) has units of (energy)",
clusterg (this point of view is more general and abstract thannot (energy volume)*']. We concentrate on the interaction
is one based on, e.g., the relative importance of surface areprtion of the Hamiltonian instead of the kinetic component
volume energies in such clustgrs since we are interested in the rough size of the change in the
In some cases, additional finite-size effects can arise frorenergy upon introduction of the interaction.
the discretization of energy levels, e.g., Anderson’s observa- The majority of the matrix elements between the basis
tion that superconductivity is suppressed when the energgtates are zero, since the phonon mediated BCS electron-
level spacing in a finite-sized superconductor exceeds thelectron interaction connects states which differ in occupa-
bulk superconducting gaj: More recent work has built tion numbers for only four electronic states. Fixing attention
from this observation to develop the interesting field ofon a given initial many-electron state, the number of final
finite-size(and fixedN) superconductivity, including studies many-electron states which give nonzero matrix elements is
of systems with equally spaced levélsyigner-Dyson level  determined by first choosing two particular filled single-
spacings, fluctuation effects, and fixedN canonical particle states as the electrons which will scatter in the initial
treatme_nt§.|n these systems, the sup_pression of simple pfiiFnany-particle state and then choosing one empty single-
correlations through finite size is mediated by the coarseningaticle state in the initial many-electron state as a state into
of the level spacing. Here we consider an alternative mechgynich an electron is scattered. The second empty state is
nism which is independent of the existence of finite levelgetermined by momentum conservation; the condition that it
spacings and can also limit the size at which pairing correpe empty introduces an inconsequential factor of one half.
lations take hold, namely, the size dependence of the nonpagicking these single-particle states from the vicinity of the

correlated part of the interaction. This channel falls outsidg-grmj energy, the fraction of nonzero matrix elements in the
of the usual BCS model Hamiltonian, but could become im-matrix representing the interaction is then essentially

portant in sufficiently small systems wherein the phase space

to exploit the pairing correlations is severely limited. A clas-

sical analog is again very small atomie.g., S) clusters AN
which assume structures that differ greatly from the local ( )( )

structure of the bulk crystalline lattice due to the inability to 2 1

repeat the favorable structural motifs of the bulk system. N . @)
Although the nonpair-correlated part of the BCS one- 3 )
square-well interaction oscillates randomly in sfgthese N/2
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Each nonzero matrix element is assumed to have a charathe possible energetic lowering of the ground state due to the
teristic size (1N)V, whereV is a volume-independent mea- introduction of the nonpair part of the interaction. Taking the

sure of the coupling matrix elemettV might be reduced atio with the pair-correlated BCS energy AfN(0), we

from the value in the pair-correlated channel due to the de(-)btaln

tailed character of the overlap integrals entering the matrix

elements for short-ranged interactiohisut such a reduction Vv 1 @ phonon 21

is not necessary for the current argument. —(—) —.
Assuming no hidden structure in the matrix element dis- Er a \/ﬁ

tribution, the lowest eigenvalue of the essentially randomly

signed uncorrelated piece of the interaction matrix can bel'he ratio scales asﬂ/ﬁ with a prefactor that depends upon

estimated from random matrix theory. The matrix is the su-

i f two distributi one i delta . material-specific quantities, but can be in the range
perposition of two distributions. One is a delta function at__y _ 14 Therefore the crossover below which the nonpair

zerg. Th? second can b? a_pproxwfated by a Gaussian distilyre|ated interactions become important occurs in a size re-
bution with standard deviation (4)V, where the results are gime which is typically somewhat smaller than that of the
insensitive to the exact form of this distribution. For calcu- onset of finite size effects due to the Coarsening of the elec-
lational purposes the delta function can be approximated by gonic energy levels. However, for weakly coupled systems,
very thin rectangular distribution so that we superpose tWahe influence of the nonpair terms could become significant,
distributions_ that both vyield circle distributions of depending upon the detailed material- and distance-
eigenvalueé.z The result is then another circle distibution dependent magnitudes of the nonpair matrix elements. This
with lowest eigenvalua/M o, whereo is the standard de- result is distinct from arguments that relate pairing correla-
viation of the entire distribution anill is the number of rows  tions between non-time-reversed states to the magnetic re-
or columns in the matrix. The standard deviation is greatlysponse of finite-sized superconducting grainghat the cur-
reduced from (M)V by the majority zero matrix elements, rent results do not depend on the relative sizes of matrix

©)

yielding a lowest eigenvalue elements between time-reversed and non-time-reversed
B B states.
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